Pengukuran Kinerja Optimasi Algoritma Bat Pada Algoritma Naive Bayes, KNN Dan Decision Tree Untuk Sentimen Analisis Di Lini Masa Twitter

Candra Adipradana

Abstract


Social media is a very effective communication media in today's digital era. Of the social media, Twitter is the most widely used social media. Many tweets entered on Twitter have encouraged research in the field of text mining. One of the branches of text mining is sentiment analysis. Sentiment analysis in this study was formed from 3 classification algorithms, namely Naïve Bayes and Decission Tree. In practice, the results of the 3 classification algorithms often produce very low levels of accuracy. Bat algorithm is an algorithm that can optimize the results from the accuracy of the Naïve Bayes, K-NN algorithm and Decission Tree. In this study, two research scenarios were made: first, calculating the accuracy of the Naïve Bayes, K-NN algorithm, and Decission Tree. Second, optimizing the classification results of the 3 algorithms with the Bat algorithm method, which then re-tested the accuracy value. In the first scenario the percentage is generated from the accuracy value of Naïve Bayes of 33,58, K-NN of 33,61 and Decission Tree of 32,82. In the second scenario, using one of the objective functions, namely f(x) = x2, the Naïve Bayes value is obtained 39,01, K-NN 66,15 and Decission Tree 76,63. From the results of 3 the optimization test of classification Algorithm, it was found that the overall objective functions of the Bat algorithm were all able to increase the data accuracy value from before optimization. From all the tests, it was found that the Decision Tree algorithm has the highest average value of optimization increment, namely 43,81 %

Keywords


Naïve Bayes; Decission Tree; K-NN; Bat Algoritm; Optimation

Full Text:

PDF

References


P. Yudha, “APJII: Jumlah Pengguna Internet di Indonesia Tembus 171 Juta Jiwa,” Kompas.com, 2019.

https://tekno.kompas.com/read/2019/05/16/03260037/apjii-jumlah-pengguna-internet-di-indonesia-tembus-171-juta-jiwa

We Are Social and Hootsuite Survei, “Riset Ungkap Pola Pemakaian Medsos Orang Indonesia,” Kompas.Com, 2018. https://tekno.kompas.com/read/2018/03/01/10340027/riset-ungkap-pola-pemakaian-medsos-orang-indonesia

H. David, Teori Komunikasi, Media, Teknologi, Dan Masyarakat., vol. III, no. 3. Bogor: Ghalia Indonesia, 2014.

Iskandar, “Pilkada Serentak di Indonesia Hasilkan 370.000 Tweets, 13 Desember 2015,” 2015. https://www.liputan6.com/tekno/read/2388665/pilkada-serentak-di-indonesia-hasilkan-370000-tweets

Charlie M. Sianipar, “Jumlah Pengguna Twitter Indonesia Naik Pesat,” Tagar.Id, 2019. https://www.tagar.id/jumlah-pengguna-twitter-indonesia-naik-pesat

P. P. O. Mahawardana, I. A. P. F. Imawati, and I. W. Dika, “Analisis Sentimen Berdasarkan Opini dari Media Sosial Twitter terhadap ‘Figure Pemimpin’ Menggunakan Python,” J. Manaj. dan Teknol. Inf., vol. 12, no. 2, pp. 50–56, 2022, [Online]. Available: https://ojs.mahadewa.ac.id/index.php/jmti/article/view/2111

A. S. H. Basari, B. Hussin, I. G. P. Ananta, and J. Zeniarja, “Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization,” in Procedia Engineering, 2013, vol. 53, pp. 453–462. doi: 10.1016/j.proeng.2013.02.059.

R. Mohamed, M. M. Yusof, and N. Wahid, “The effectiveness of Bat algorithm for data handling in various applications,” in Proceedings - 6th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2016, 2017, pp. 151–156. doi: 10.1109/ICCSCE.2016.7893562.

H. Muhamad, C. A. Prasojo, N. A. Sugianto, L. Surtiningsih, and I. Cholissodin, “Optimasi Naïve Bayes Classifier Dengan Menggunakan Particle Swarm Optimization Pada Data Iris,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, p. 180, 2017, doi: 10.25126/jtiik.201743251.

A. Kumar and A. Jaiswal, “Empirical study of twitter and tumblr for sentiment analysis using soft computing techniques,” in Lecture Notes in Engineering and Computer Science, 2017, vol. 1, pp. 472–476.

H. Sumarmo, “Komparasi Algoritma Klasifikasi Machine Learning,” BINA Insa. ICT J., vol. VOL 4, no. ISSN : 2527-9777, pp. 189–196, 2017.

S. V. and M. M., “Review: Sentiment Analysis using SVM Classification Approach,” Int. J. Comput. Appl., vol. 181, no. 37, pp. 1–8, 2019, doi: 10.5120/ijca2019917993.

J. C. Zavala-Díaz, M. A. Cruz-Chávez, J. López-Calderón, J. A. Hernández-Aguilar, and M. E. Luna-Ortíz, “A multi-branch-and-bound binary parallel algorithm to solve the knapsack problem 0-1 in a multicore cluster,” 2019. doi: 10.3390/app9245368.

K. A. Chandra, I. M. Widiartha, and A. Muliantara, “Analisis & implementasi algoritma kelelawar sebagai fitur selektor dalam klasifikasi dermatology,” J. Ilmu Komput. Univ. Udayana, vol. IX, no. 2, pp. 15–26, 2016.

H. Khurana and S. K. Sahu, “Bat inspired sentiment analysis of Twitter data,” 2018. doi: 10.1007/978-981-10-6875-1_63.

M. Bilal, H. Israr, M. Shahid, and A. Khan, “Sentiment

classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and KNN classification techniques,” J. King Saud Univ. - Comput. Inf. Sci., vol. 28, no. 3, pp. 330–344, 2016, doi: 10.1016/j.jksuci.2015.11.003.

M. A. Hearst, “Text data mining: Issues, techniques, and the relationship to information access,” in Presentation notes for UW/MS workshop on data mining, 1997.

R. Feldman and I. Dagan, “Knowledge Discovery in Textual Databases (KDT),” in International Conference on Knowledge Discovery and Data Mining (KDD), 1995, pp. 112–117. [Online]. Available: http://www.aaai.org/Papers/KDD/1995/KDD95-012.pdf

J. Feldman, R & Sanger, The text mining handbook: advanced approaches in analyzing unstructured data, vol. 44, no. 10. New York: Cambridge Univ. Press, 2007. doi: 10.5860/choice.44-5684.

C. Triawati, M. A. Bijaksana, N. Indrawati, and W. A. Saputro, “Pemodelan Berbasis Konsep Untuk Kategorisasi Artikel Berita,” in Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 2009, vol. 2009, no. Snati, pp. 48–53.

S. Roaf, Introduction to second edition. MIT Press, 2014. doi: 10.5325/j.ctv1c9hns8.7.

KBBI Kemendikbud, “KBBI Daring,” Badan Pengembangan dan Pembinaan Bahasa, Kementerian Pendidikan dan Kebudayaan Republik Indonesia, 2021. https://kbbi.kemdikbud.go.id/entri/optimas (accessed Jun. 12, 2020).

A. Hasad, “Algoritma optimasi dan aplikasinya,” Bogor, 2011.

K. Dave, S. Lawrence, and D. M. Pennock, “Mining the peanut gallery: Opinion extraction and semantic classification of product reviews,” Princeton,NJ; Pasadena, CA, 2003. doi: 10.1145/775152.775226.

D. T. Larose, “Naïve Bayes Estimation and Bayesian Networks,” in Data Mining Methods and Models, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006, pp. 204–239. doi: 10.1002/0471756482.ch5.

M. Kubek, “Natural Language Processing and Text Mining,” in Studies in Big Data, vol. 62, London, England: Springer Verlag, 2020, pp. 35–52. doi: 10.1007/978-3-030-23136-1_4.

J. Arguello, “Naïve Bayes Text Classification,” The University of North Carolina, 2013. https://ils.unc.edu/courses/2013_fall/inls613_001/lectures/04NaiveBayes Classification.pdf (accessed Apr. 12, 2020).

K. Jain and S. Kaushal, “A Comparative Study of Machine Learning and Deep Learning Techniques for Sentiment Analysis,” in 2018 7th International Conference on Reliability, Infocom Technologies and Optimization: Trends and Future Directions, ICRITO 2018, 2018, pp. 483–487. doi: 10.1109/ICRITO.2018.8748793.

Jyoti and S. Rao, “A survey on sentiment analysis and opinion mining,” in ACM International Conference Proceeding Series, 2016, vol. 12-13-NaN-2016, pp. 7–11. doi: 10.1145/2979779.2979832.

A. P. Jain and V. D. Katkar, “Sentiments analysis of Twitter data using data mining,” in Proceedings - IEEE International Conference on Information Processing, ICIP 2015, 2016, pp. 807–810. doi: 10.1109/INFOP.2015.7489492.

M. Kumaresan, “Sentiment Analysis using Vader,” DELHI TECHNOLOGICAL UNIVERSITY, 2016.

X. S. Yang, A new metaheuristic Bat-inspired Algorithm, Nature Ins., vol. 284. Cambridge, UK: Springer Verlag, 2010. doi: 10.1007/978-3-642-12538-6_6.




DOI: http://dx.doi.org/10.30646/tikomsin.v11i1.731

Refbacks

  • There are currently no refbacks.



Editorial Office :
TIKomSiN : Jurnal Teknologi Informasi dan Komunikasi Sinar Nusantara
Published by STMIK Sinar Nusantara Surakarta
Address KH Samanhudi 84 - 86 Street, Laweyan Surakarta, Central Java, Indonesia
Postal Code: 57142, Phone & Fax: +62 271 716 500
Website: https://p3m.sinus.ac.id/jurnal/index.php/TIKomSiN
Email: tikomsin @ sinus.ac.id

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats of tikomsin