KLASIFIKASI KELAYAKAN PEGAWAI KONTRAK MENJADI PEGAWAI TETAP MENGGUNAKAN METODE NAIVE BAYES
Abstract
Employees are the most important asset in the ongoing activities and programs that have been designed by the foundation and the emergence of difficulties in determining the status of new staff at the foundation, because the manual system is still in effect, from written exams, oral exams and interviews. which allows the loss of files in testing and lack of objectivity in giving an assessment to employees. Therefore, this research was conducted to help determine the eligibility of foundation employees to be classified into "Eligible" and "Not Eligible" to be appointed as permanent employees of the foundation. The method implemented in this study uses the Naive Bayes classifier method in determining classification, in research testing using the Confussion Matrix validity testing method. The creation of a foundation employee classification system using the Naive Bayes method, which can determine the classification results based on the results of Eligible and not eligible to be appointed as permanent employees of the foundation. the test results obtained from the study used 50 data, with details of 35 as training data 15 training data obtained an accuracy of 86.7%. from here which shows that this program can be used as a reference in determining the eligibility status of permanent employees at the Smart Cendekia foundation.
Keywords
Full Text:
PDFReferences
E. Poerwandono and J. Perwitosari, “Penerapan Data Mining Untuk Penilaian Kinerja Karyawan Di PT. Riksa Dinar DJaya Menggunakan Metode Naïve Bayes Classification,” J. Sains dan Teknol., vol. 5, no. 1, p. |pp, 2023, [Online]. Available: https://doi.org/10.55338/saintek.v5i1.1416.
D. Remawati, P. Harsadi, and R. D. Nugroho, “Penerapan Sistem Penunjang Keputusan Menggunakan Algoritma Naive Bayes Pada konsep Human Resource Information System (HRIS) (Studi kasus :Penerusan Kontrak Kerja Karyawan di PT. XYZ),” J. Ilm. SINUS, vol. 18, no. 1, p. 63, 2020, doi: 10.30646/sinus.v18i1.440.
A. Sudrajat, “Penerapan Metode Naïve Bayes Untuk Menentukan Penilaian Kinerja Karyawan PT.Sinergi Guna Solusindo,” OKTAL J. Ilmu Komput. dan Sci., vol. Volume 99, no. 99, pp. 1596–1606, 2022, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal.
F. Ramadhan and H. D. Bhakti, “Klasifikasi Penilaian Kinerja Karyawan Menggunakan Algoritma Naive Bayes(Studi Kasus PT. AS SABAR SUKSES BERKAH),” vol. 4, no. 2, 2024, doi: 10.8734/Kohesi.v1i2.365.
A. J. Susilo, K. K. Kustanto, and D. Remawati, “Implementasi Naïve Bayes Dalam Pemilihan Jenis Bahan Pembuatan Meja,” J. Ilm. SINUS, vol. 21, no. 1, p. 39, 2023, doi: 10.30646/sinus.v21i1.674.
N. Nurainun, E. Haerani, F. Syafria, and L. Oktavia, “Penerapan Algoritma Naïve Bayes Classifier Dalam Klasifikasi Status Gizi Balita dengan Pengujian K-Fold Cross Validation,” J. Comput. Syst. Informatics, vol. 4, no. 3, pp. 578–586, 2023, doi: 10.47065/josyc.v4i3.3414.
D. Remawati and K. Sandradewi, “Journal of Information Technology , Computer Engineering and Artificial Intelligence ( ITCEA ) Metode Naïve Bayes Untuk Prediksi Waktu Produksi Mebel di UD . Wali Barokah Kartasura Sukoharjo Jawa Tengah,” pp. 58–67, 2024.
W. Yulianti1, W. Wiyanto, and N. Nurhidayanti, “Algoritma Naive Bayes Untuk Klasifikasi Perpanjangan Kontrak Kerja Karyawan Pada PT Torini Jaya Abadi,” vol. 5, no. 3, pp. 516–524, 2023.
A. Dwi Septiana, D. Remawati, P. Studi Teknologi Informasi, and S. Sinar Nusantarara surakarta, “Diagnosa Penyakit Antraks Dengan Metode Naive Bayes (Studi Kasus: Kambing Jawarandu),” J. TIKomSiN, vol. 11, no. 2, pp. 53–58, 2023, [Online]. Available: https://doi.org/10.30646/tikomsin.v11i2.787.
H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” J. Inform., vol. 7, no. 1, pp. 1–7, 2020, doi: 10.31311/ji.v7i1.6203.
I. A. Prabowo, D. Remawati, and A. P. W. Wardana, “Klasifikasi Tingkat Gangguan Tidur Menggunakan Algoritma Naïve Bayes,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.519.
P. Harsadi, D. Remawati, and K. B. Satrio, “Pemetaan Usaha Cafe Di Manahan Dengan Menggunakan Metode Naive Bayes Studi Kasus Dinas Perdagangan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, pp. 57–62, 2020, doi: 10.30646/tikomsin.v8i2.522.
D. Alita, I. Sari, A. R. Isnain, and S. Styawati, “Penerapan Naïve Bayes Classifier Untuk Pendukung Keputusan Penerima Beasiswa,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 17, 2021, doi: 10.33365/jdmsi.v2i1.1028.
Heliyanti Susana, “Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 4, no. 1, pp. 1–8, 2022, doi: 10.52005/jursistekni.v4i1.96.
A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 452–458, 2023, doi: 10.36040/jati.v7i1.6303.
D. A. Punkastyo, F. Septian, and A. Syaripudin, “Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Prediksi Kelulusan Siswa,” J. Syst. Comput. Eng., vol. 5, no. 1, pp. 24–35, 2024, doi: 10.61628/jsce.v5i1.1073.
DOI: http://dx.doi.org/10.30646/tikomsin.v12i2.863
Refbacks
- There are currently no refbacks.
Editorial Office :
TIKomSiN : Jurnal Teknologi Informasi dan Komunikasi Sinar Nusantara
Published by STMIK Sinar Nusantara Surakarta
Address KH Samanhudi 84 - 86 Street, Laweyan Surakarta, Central Java, Indonesia
Postal Code: 57142, Phone & Fax: +62 271 716 500
Website: https://p3m.sinus.ac.id/jurnal/index.php/TIKomSiN
Email: tikomsin @ sinus.ac.id
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.