Sistem Pendukung Keputusan Untuk Pemilihan Siswa Berprestasi Dengan Metode Analytical Hierarchy Process (AHP) Dan Technique For Order Of Preference By Similarity To Ideal Solution (TOPSIS)

Akhmad Luthfi Rahman¹⁾, Muhammad Hasbi²⁾, Setiyowati³⁾

¹⁾ Program Studi Sistem Informasi, STMIK Sinar Nusantara Surakarta

²⁾ Program Studi Teknik Informatika, STMIK Sinar Nusantara Surakarta

³⁾ Program Studi Manajemen Informatika, STMIK Sinar Nusantara Surakarta

¹⁾ luthfi@gmail.com; ²⁾ mhasbi@sinus.ac.id; ³⁾ setiyowati@sinus.ac.id

ABSTRACT

Public High Schools of Surakarta are in an effort to improve student achievement by giving rewards to students who have the best performance. The selection process for SMA N 7 (Public High School of 7 Surakarta) still uses a manual process so it is not objective and it takes a long time. Therefore, we need an application that can support the process of selecting high achieving students in SMA N 7 Surakarta. This application later can help to make decisions about the selection of high achieving students by changing the value of standard criteria into numbers. Then, the right method for this research is the AHP (Analytical Hierarchy Process) while the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) is for its rankings. Because this method is able to produce effective, objective and efficient decisions. The system development in this research uses the waterfall model. The system design uses object oriented approach, Use Case Diagram, Activity, Squence Diagram, Class Diagram. The programming languages use PHP and MySQL. Meanwhile, Supporting software used Notepad ++ and XAMPP as a virtual server and the testing programs use BlackBox Testing. The results of this study are Student Achievement Decision Application with the calculation of Analytical Hierarchy Process and Technique For Order Of Preference By Similarity To Ideal Solution methods.

Keywords: Waterfall, Analytical hierarchy process, Technique for Order of Preference by Similarity to Ideal Solution, BlackBox

I. PENDAHULUAN

SMA Negeri 7 Surakarta adalah salah satu sekolah menengah terbaik di Surakarta, Untuk meningkatkan prestasi siswanya, SMA N 7 Surakarata memberikan reward bagi siswa yang memiliki prestasi terbaik. Seleksi SMA N 7 masih menggunakan proses manual sehingga ditemukan beberapa permasalahan, seperti adanya penilaian yang tidak objektif, serta proses penilaian membutuhkan waktu lama. Maka dibutuhkan suatu aplikasi yang dapat mendukung proses pemilihan siswa berprestasi yang dapat mengubah nilai kriteria standar menjadi angka. Dibutuhkan suatu metode yang dapat mengubah nilai kriteria standar tersebut menjadi angka yaitu Metode AHP (*Analytical Hierarchy Process*) karena nilai kriteria dari sekolah berupa suatu keterangan. Contohnya nilai sikap baik dan buruk, sedangkan untuk melakukan perangkingan siswa dengan metode TOPSIS (*Technique for Order of Preference by Similarity to Ideal Solution*). Metode ini mampu menghasilkan keptusan efektif, objektif dan efisien. Maka akan dibuat sebuah Sistem Pendukung Keputusan pemilihan siswa berprestasi dan penerapan metode AHP (*Analytical Hierarchy Process*) dan TOPSIS (*Technique for Order of Preference by Similarity to Ideal Solution*).

II. TINJAUAN PUSTAKA

2.1 Penelitian Terkait

Penelitian terkait Kombinasi metode AHP dan TOPSIS adalah pada (1) Penerapan pemilihan bahan pewarna alami batik tulis bagi pengrajin batik tulis, pemilihan bahan

pewarna alami yang tepat berpengaruh terhadap warna, corak,dan kecerahan kain batik tulis. Metode AHP digunakan untuk menentukan bobot masing-masing kriteria. Metode TOPSIS digunakan untuk menentukan prioritas alternatif (Chamid & Murti, 2018). (2) Metode AHP dan TOPSIS juga diterapkan untuk Menentukan Alat Tangkap yang sesuai bagi Nelayan di Madura (Heru Lumaksono, 2017). (3) Metode AHP dan TOPSIS juga diterapkan untuk seleksi penerimaan siswa program percepatan belajar (akselerasi) di SMP Negeri di Wonogiri, (Sejati Purnomo, Widya Sihwi, & Anggrainingsih, 2013).

Kombinasi metode AHP dan TOPSIS dipilih karena memliki kelebihan berdasar pada matriks perbandingan pasangan dan melakukan analisis konsistensi. Sedangkan metode TOPSIS dapat menyelesaikan pengambilan keputusan secara praktis, karena konsepnya sederhana dan mudah dipahami, komputasinya efisien, serta memiliki kemampuan mengukur kinerja relatif dari alternatif-alternatif keputusan (Juliyanti, Mohammad Isa Irawan, 2011) (Purwitasari & Pribadi, 2015).

2.2 Sistem Pendukung Keputusan (SPK)

Sistem pendukung keputusan pertama kali diperkenalkan oleh G. Anthony Gorry dan Michael S. Scott Marton, mereka mengembangkan kerangka pemikiran tentang pemanfaatan aplikasi komputer pada proses pengambilan keputusan bagi level manajemen. (Kusumadewi, 2005)

2.3 Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP) merupakan metode yang digunakan untuk membantu menentukan keputusan yang dikembangkan oleh Thomas L. Saaty pada tahun 1970-an. Metode AHP dapat digunakan untuk mengukur tingkat kepentingan hal-hal yang bersifat kualitatif dengan tingkat kompleksitas yang tinggi (Saaty, 2008). Metode AHP dapat dilakukan dengan langkah-langkah sebagai berikut:

1. Membuat matriks berpasangan

$$A = [a_{im}] = \begin{bmatrix} \frac{1}{1} & a_{12} & \dots & a_{1n} \\ \frac{1}{a_{12}} & \frac{1}{1} & \dots & a_{2n} \\ \dots & \frac{1}{a_{1n}} & a_{2n} & \dots & 1 \end{bmatrix}$$
(1)

i, m = 1, 2, ..., n = indeks kriteria-kriteria siswa berprestasi.

Menurut Saaty penilaian perbandingan terbaik dalam mengekspresikan pendapat digunakan skala 1 sampai dengan 9, seperti pada Tabel 1. (Saaty, 2008)

Tabel 1. Tabel penilaian kepentingan relatif kriteria menggunakan skala Saaty

Kep	Keterangan	Penjelasan
1	kedua elemen sama	Dua elemen mempunyai pengaruh yang sama besar terhadap
	pentingnya	tujuan
3	Elemen yang satu sedikit lebih penting dari pada elemen yang lain	Pengalaman dan penilaian sedikit menyokong satu elemen dibanding elemen lainnya
5	Elemen yang satu lebih penting dari pada elemen lainya	Pengalaman dan penilaian sangat kuat menyokong satu elemen dibanding elemen lainya
7	Satu elemen jelas lebih mutlak penting dari elemen lainya	Satu elemen yang kuat disokong dan dominan terlihat dalam praktek
9	Satu elemen mutlak penting daripada elemen lainnya	Bukti yang mendukung elemen yang satu terhadap elemen memiliki tingkat penegasan tertinggi yang mungkin menguatkan
2, 4, 6, 8	Nilai – nilai antara antara dua nilai pertimbangan yang berdekatan	Nilai ini diberikan bila ada dua kompromi diantara dua pilihan.

2. Menormalisasi matriks keputusan dengan cara setiap kolom matriks dijumlahkan, lalu masing-masing kriteria pada matriks dibagi dengan nilai total kolomnya. Kemudian menentukan rata-rata baris matriks yang membuat himpunan sejumlah n bobot w, yaitu w1, w2, ..., wn.

$$W: W=\{W1,W2,...Wn\}.$$
 (2)

Menorlmalkan tabel matriks berpasangan

$$\sum_{i} a_{ij} = 1 \tag{3}$$

Mencari vektor bobot dengan menghitung rata-rata untuk setiap baris

$$w_i = \frac{1}{n} \sum_j a_{ij} \tag{4}$$

- 3. Menentukan tingkat konsistensi dari matriks perbandingan berpasangan yang telah didapat dari langkah sebelumnya. Langkah-langkah yang dilakukan pada tahap ini adalah:
 - a. Mengalikan masing-masing nilai pada kolom pertama dengan prioritas relatif pada kriteria pertama, nilai pada kolom kedua dengan prioritas relatif pada kriteria kedua, dan seterusnya.
 - b. Menjumlahkan nilai pada setiap baris. Kemudian hasil penjumlahan tersebut dibagi dengan nilai kriteria prioritas relatif yang berkaitan.
 - c. Menjumlahkan hasil pada langkah poin (b) dengan banyaknya kriteria, kemudian disebut dengan λ max.

 - e. Menghitung Consistency Ratio (CR) dengan persamaan 6. CR = CI/CR(6)
- 4. IR adalah *Indeks Random Consistency*. *Indeks Random Consistency* dapat dilihat pada Tabel 2

Tabel 2 Tabel indeks random konsistensi

n	2	3	4	5	6	7	8	9	10
RI	0	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.51

Jika nilai $CR \le 0.1$, maka matriks perbandingan berpasangan dapat dikatakan konsisten dan bobot yang dihasilkan dapat digunakan untuk perangkingan alternatif dengan metode TOPSIS pada langkah selanjutnya pada penelitian ini.

2.4 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS merupakan salah satu metode yang digunakan untuk mengambil keputusan dengan banyak kriteria. Metode ini pertama kali diperkenalkan oleh *Yoo* dan *Hwang* pada tahun 1981. Metode TOPSIS memiliki konsep dasar bahwa alternatif terpilih terbaik adalah alternatif yang memiliki jarak terpendek dari solusi ideal positif dan juga memiliki jarak terjauh dari solusi ideal negatif. (Kusrini & Gole, 2007)

Langkah-langkah yang ada di metode TOPSIS adalah:

1. Membuat matriks keputusan ternormalisasi, metode TOPSIS memerlukan rating kinerja tiap alternatif (Siswa) pada setiap kriteria (Nilai kognitif siswa, Prestasi non Akademik, Jumlah kehadiran siswa, Nilai Sikap dan Jumlah Keterlambatan) yang ternormalisasi. Persamaan matriks ternormalisasi dapat dilihat pada persamaan 7. (Kusrini & Gole, 2007).

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}}}$$
 (7)

Dengan i = 1, 2, ..., m; dan j = 1, 2, ..., n. rij = matriks keputusan ternormalisasi. xij = bobot kriteria ke j pada alternatif ke i. i = alternatif peminatan ke i.j = kriteria peminatan ke j.

2. Membuat matriks keputusan ternormalisasi terbobot

$$V = \begin{bmatrix} w_{11}r_{11} & \cdots & w_{1n}r_{1n} \\ \vdots & \ddots & \vdots \\ w_{m1}r_{m1} & \cdots & w_{nm}r_{nm} \end{bmatrix}$$
Nilai matriks ternormalisasi terbobot dilambangkan dengan yij, dapat dihitung dengan

persamaan 3.

$$y_{ij} = w_i r_{ij} \qquad \dots (9)$$

Dengan i = 1, 2, ..., m; dan j = 1, 2, ..., n. Di mana w_i adalah bobot dari kriteria ke-j. Pemberian nilai bobot ditentukan oleh guru sebagai pengambil keputusan pemilihan siswa berprestasi di SMA Negeri 7 Surakarta. Pemberian bobot dengan memakai hasil dari perhitungan AHP sebelumnya.

3. Menentukan matriks solusi ideal positif dan matriks solusi ideal negative, dengan berdasarkan rating bobot ternormalisasi, maka dapat menentukan solusi ideal positif (A+) dan solusi ideal negatif (A-). Untuk dapat menentukan solusi ideal sebelumnya harus ditentukan apakah atribut bersifat keuntungan (benefit) atau bersifat biaya (cost).

$$A^{+} = (y_{i}^{+}, y_{2}^{+}, ..., y_{2n}^{+})$$

$$A^{-} = (y_{i}^{-}, y_{2}^{-}, ..., y_{2n}^{-})$$
.....(10)

$$y_{j}^{+} = \begin{cases} max_{i} \ y_{ij} \ jika \ adalah \ atribut \ keuntungan \\ max_{i} \ y_{ij} \ jika \ adalah \ atribut \ biaya \end{cases}$$

$$y_{j}^{-} = \begin{cases} max_{i} \ y_{ij} \ jika \ adalah \ atribut \ keuntungan \\ max_{i} \ y_{ij} \ jika \ adalah \ atribut \ biaya \end{cases}$$

Atribut keuntungan (benefit) adalah atribut yang diberikan kepada nilai tertinggi untuk mendapatkan jarak terdekat dengan solusi ideal positif dan sedangkan untuk jarak terjauh dengan menggunakan solusi ideal negatif. Sebaliknya, atribut biaya (cost) adalah atribut yang diberikan kepada nilai terkecil untuk mendapatkan jarak terjauh dari solusi ideal positif dan jarak terdekat dari solusi ideal negatif.

 y_i^{\dagger} adalah nilai terbesar dari matriks y pada tiap kriteria ke j y_j^- .adalah nilai terkecil dari matriks y pada tiap kriteria ke j.

4. Menentukan jarak antara nilai setiap alternatif (siswa) dengan matriks solusi ideal positif dan solusi ideal negatif. Jarak antara nilai alternatif ke i dengan solusi ideal positif dapat dirumuskan dengan persamaan 12, dan jarak antara nilai alternatif ke i dengan solusi ideal negatif dapat dirumuskan dengan persamaan 13.

$$D_i^+ = \sqrt{\sum_{j=1}^n (y_j^+ - y_{ij})^2}(12)$$

$$D_i^- = \sqrt{\sum_{j=1}^n (y_{ij} - y_i^-)^2}(13)$$

$$D_i^- = \sqrt{\sum_{j=1}^n (y_{ij} - y_i^-)^2}$$
 (13)

 D_i^+ adalah jarak antara nilai alternatif ke i dengan solusi ideal positif. D_i^- adalah jarak antara nilai alternatif ke i dengan solusi ideal negatif.

5. Tahap ini adalah menentukan nilai preferensi untuk setiap alternative, nilai preferensi (Vi) terbesar menunjukkan alternatif ke i dan merupakan nilai yang lebih layak untuk dipilih sebagai solusi terbaik. Nilai Vi dapat dihitung dengan persamaan 14.

$$V_i = \frac{D_i^-}{D_j^- - D_j^+} \tag{14}$$

 D_i^+ adalah jarak antara nilai alternatif ke i dengan solusi ideal positif.

 D_i^- adalah jarak antara nilai alternatif ke i dengan solusi ideal negatif.

 V_i adalah nilai preferensi yang menunjukkan nilai dari alternatif ke i atau solusi pemilihan siswa berprestasi. Setelah didapat nilai , maka alternatif akan dirangking berdasarkan urutan nilai. Nilai terbesar dari menunjukkan bahwa alternatif ke i adalah solusi yang paling disarankan.

III. METODE PENELITIAN

3.1 Teknik Pengumpulan Data

Teknik Pengumpulan Data pada penelitian ini adalah melakukan observasi di SMA N 7 Surakarta pada proses seleksi pemilihan siswa berprestasi, melakukan wawancara dengan narasumber (Panitia seleksi, Kepala Sekolah) di SMA N 7 Surakarta dan melakukan studi pustaka terkait dengan metode yang dipergunakan yaitu AHP dan TOPSIS, perancangan sistem dengan pendekatan *Object Oriented*, serta bahasa pemrograman yang dipergunakan untuk membuat aplikasi ini.

3.2 Perancangan Sistem

Perancangan sistem pada penelitian ini menggunakan pendekatan *Object oriented*, adapun diagram yang gunakan adalah *Use Case Diagram*, *Activity Diagram*, *Class Diagram*, *Squence Diagram*, Desain Input Output, Desain Database

IV. HASIL DAN PEMBAHASAN

4.1 Rancangan Pendukung Keputusan

Metode AHP digunakan untuk melakukan proses perhitungan bobot prioritas, yang akan digunakan didalam proses perangkingan alternatif pada metode TOPSIS. Sistem mendapatkan inputan dari pengguna sistem berupa data hasil penilaian Siswa berprestasi, data siswa berprestasi terdiri dari 33 siswa, sedangkan data nilai matriks perbandingan berpasangan terdiri dari 5 kriteria yaitu Kehadiran (C1), Keterlambatan (C2), Prestasi (C3), Nilai Kognitif (C4), Nilai Sikap (C5).

a. Metode AHP

- 1. Menentukan bobot kepentingan dari tiap-tiap kriteria yang ada.
- 2. Membuat tabel perbandingan prioritas tiap kriteria yang ada, penentuan skala kepentingan menggunakan Skala Penilaian Perbandingan Berpasangan dengan menggunakan skala Saaty.

$$\begin{bmatrix} 1 & 1 & 0.5 & 0.5 & 0.33 \\ \frac{1}{1} & 1 & 0.5 & 0.5 & 0.33 \\ \frac{1}{0.5} & \frac{1}{0.5} & 1 & 1 & 0.5 \\ \frac{1}{0.5} & \frac{1}{0.5} & \frac{1}{1} & 1 & 0.5 \\ \frac{1}{0.33} & \frac{1}{0.33} & \frac{1}{0.5} & \frac{1}{0.5} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0.5 & 0.5 & 0.33 \\ 1 & 1 & 0.5 & 0.5 & 0.33 \\ 2 & 2 & 1 & 1 & 0.5 \\ 2 & 2 & 1 & 1 & 0.5 \\ 3 & 3 & 2 & 2 & 1 \end{bmatrix}$$

Tabel 3 merupakan hasil perbandingan prioritas tiap kriteria.

Tabel 3 Perbandingan prioritas tiap kriteria

	Kehadiran	Keterlambatan	Prestasi	Nilai Kognitif	Nilai Sikap
Kehadiran	1	1	0.5	0.5	0.33
Keterlambatan	1/1	1	0.5	0.5	0.33
Prestasi	1/0.5	1/0.5	1	1	0.5
Nilai Kognitif	1/0.5	1/0.5	1/1	1	0.5
Nilai Sikap	1/0.33	1/0.33	1/0.5	1/0.5	1

Tahap selanjutnya adalah mengubah nilai yang ada pada Tabel 4 menjadi nilai desimal seperti pada Tabel 4.

Tabel 4 Perbandingan prioritas tiap kriteria

	Kehadiran	Keterlambatan	Prestasi	Nilai Kognitif	Nilai Sikap
Kehadiran	1	1	0.5	0.5	0.33
Keterlambatan	1	1	0.5	0.5	0.33
Prestasi	2	2	1	1	0.5
Nilai Kognitif	2	2	1	1	0.5
Nilai Sikap	3	3	2	2	1
Jumlah	9	9	5	5	2.67

3. Lakukan normalisasi tabel perbandingan prioritas, Didapat dari pembagian tiap sel dibagi dengan jumlah tiap kolomnya, dengan menggunakan persamaan 4

$$\begin{bmatrix} \left(\frac{1}{9}\right) + \left(\frac{1}{9}\right) + \left(\frac{0.5}{5}\right) + \left(\frac{0.5}{5}\right) + \left(\frac{0.33}{2.67}\right) \\ \left(\frac{1}{9}\right) + \left(\frac{1}{9}\right) + \left(\frac{1}{9}\right) + \left(\frac{0.5}{5}\right) + \left(\frac{0.33}{2.67}\right) \\ \left(\frac{2}{9}\right) + \left(\frac{2}{9}\right) + \left(\frac{1}{5}\right) + \left(\frac{1}{5}\right) + \left(\frac{0.5}{5}\right) \\ \left(\frac{2}{9}\right) + \left(\frac{2}{9}\right) + \left(\frac{1}{5}\right) + \left(\frac{1}{5}\right) + \left(\frac{0.5}{2.67}\right) \\ \left(\frac{2}{9}\right) + \left(\frac{2}{9}\right) + \left(\frac{1}{5}\right) + \left(\frac{1}{5}\right) + \left(\frac{0.5}{2.67}\right) \\ \left(\frac{3}{9}\right) + \left(\frac{3}{9}\right) + \left(\frac{2}{5}\right) + \left(\frac{2}{5}\right) + \left(\frac{1}{2.67}\right) \end{bmatrix} / 5$$

$$\begin{bmatrix} 0.11 + 0.11 + 0.10 + 0.10 + 0.13 \\ 0.11 + 0.11 + 0.10 + 0.10 + 0.13 \\ 0.22 + 0.22 + 0.20 + 0.20 + 0.19 \\ 0.22 + 0.22 + 0.20 + 0.20 + 0.19 \\ 0.22 + 0.22 + 0.20 + 0.20 + 0.19 \\ 0.33 + 0.33 + 0.40 + 0.40 + 0.38 \end{bmatrix} / 5 = \begin{bmatrix} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.4 \end{bmatrix}$$

 $Kehadiran = \{(1/9) + (1/9) + (0.5/5) + (0.5/5) + (0.5/5) + (0.33/2.67)\} / 5 = \{0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10 + 0.10 + 0.13\} / 5 = 0.11 + 0.11 + 0.10$ $Keterlambatan = \{(1/9) + (1/9) + (0,5/5) + (0,5/5) + (0,33/2,67)\}/5 = \{0,11 + 0,11 + 0,10 + 0,10 + 0,13\}/5 = 0,11 + 0,11 + 0,10 + 0,10 + 0,13\}/5 = 0,11 + 0,11 + 0,10 + 0,10 + 0,13\}/5 = 0,11 + 0,11 + 0,10 + 0,10 + 0,13\}/5 = 0,11 + 0,11 + 0,10 + 0,10 + 0,10 + 0,13\}/5 = 0,11 + 0,11 + 0,10$ Prestasi = $\{(2/9)+(2/9)+(1/5)+(1/5)+(0,5/2,67)\}/5=\{0,22+0,22+0,20+0,20+0,19\}/5=0,2$ Nilai Kognitif = $\{(2/9)+(2/9)+(1/5)+(1/5)+(0,5/2,67)\}/5=\{0,22+0,22+0,20+0,20+0,19\}/5=0,2$ Nilai Sikap = $\{(3/9)+(3/9)+(2/5)+(2/5)+(1/2,67)\}/5 = \{0,33+0,33+0,40+0,40+0,38\}/5 = 0,4$ setelah dihitung berikut hasil normalisasi perbandingan prioritas pada Tabel 6.

Tabel 5 Normalisasi tabel perbandingan prioritas

	Kehadiran	Keterlambatan	Prestasi	Nilai Kognitif	Nilai Sikap
Kehadiran	0.11	0.11	0.1	0.1	0.13
Keterlambatan	0.11	0.11	0.1	0.1	0.13
Prestasi	0.22	0.22	0.2	0.2	0.19
Nilai Kognitif	0.22	0.22	0.2	0.2	0.19
Nilai Sikap	0.33	0.33	0.4	0.4	0.38
Jumlah	1	1	1	1	1

4. Menentukan nilai konsistensi untuk mengetahui apakah sudah konsisten atau tidak Menghitung principal eigen value atau λ max Tabel 5 dengan cara menjumlahkan hasil perkalian antara sel pada baris jumlah dan sel pada kolom Priority Vector. Misalkan A adalah matriks dan w adalah vektor bobot.

$$(A)(w^{T}) = \begin{bmatrix} 1 & 1 & 0.5 & 0.5 & 0.33 \\ \frac{1}{1} & 1 & 0.5 & 0.5 & 0.33 \\ \frac{1}{0.5} & \frac{1}{0.5} & 1 & 1 & 0.5 \\ \frac{1}{0.5} & \frac{1}{0.5} & \frac{1}{1} & 1 & 0.5 \\ \frac{1}{0.33} & \frac{1}{0.33} & \frac{1}{0.5} & \frac{1}{0.5} & 1 \end{bmatrix} x \begin{bmatrix} 0.1 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.4 \end{bmatrix} = \begin{bmatrix} 0.55 \\ 0.55 \\ 1.03 \\ 1.03 \\ 1.85 \end{bmatrix}$$

$$\Lambda \max = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{elemen \ ke - i \ pada \ (A)(w^{T})}{elemen \ ke - i \ pada \ w^{T}} \right]$$

Menghitung indeks konsistensi: CI= $(\Lambda \text{ max-n})/(n-1)$ dimana Λ adalah nilai *eigen* terbesar dari matrik berordo n dan n adalah jumlah kriteria

 $CI=(\Lambda max -n)/(n-1)= (5,01-5)/(5-1)=0/4=0,0033140$

CI = 0 artinya pembobotan yang dilakukan sangat konsisten

Menghitung Rasio Konsistensi (CR) dimana, Consistency Index (CI) untuk n = 5.

Diperoleh RI5 = 1,12 seperti pada Tabel 7.

Sehingga: CR=CI/RI= -(0,0033140)/1,12= 0,0029589

Tabel 6. Tabel RI (Random Index)

n	2	3	4	5	6	7	8	9	10
RI	0	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.51

Jika CI=0 Maka sangat konsisten; jika CI/(RI)_n $\leq 0,1$ maka cukup konsisten, dan jika CI/(RI)_n $\geq 0,1$ maka A sangat tidak konsisten.

b. Metode TOPSIS

Metode TOPSIS digunakan untuk perangkingan alternative, langkah-langkah pada metode TOPSIS adalah Menentukan rating kecocokan pada tiap Alternatif data nilai rapor keempat siswa yang digunakan. Tabel 7 berikut ini merupakan contoh kasus sebagai simulasi penghitungan.

Tabel 7. Contoh Kasus

NIS	Siswa	Kehadiran	Keterlambatan	Prestasi	Nilai Kognitif	Nilai Sikap, Spiritual & Sosial
6933	Siswa 1	0x Tanpa Ket	1	Tidak ada	78,1	B dan B
6936	Siswa 2	2x Tanpa Ket	1	Provinsi	80,8	B dan A
6966	Siswa 3	13x Tanpa Ket	3	Kabupaten	80	A dan A
6967	Siswa 4	0x Tanpa Ket	5	Nasional	80,3	A dan B

Tabel 8 Rating pada setiap alternatif

Siswa	Kehadiran	Keterlambatan	Prestasi	Nilai Kognitif	Nilai Sikap,
Siswa 1	1	1	5	8	6
Siswa 2	3	1	8	8	9
Siswa 3	10	1	7	8	10
Siswa 4	1	1	9	8	9

1) Membuat matriks keputusan ternormalisasi dengan rumus persamaan 7. Adapun caranya adalah nilai setiap kriteria dipangkatkan 2 lalu dijumlah perkolom sesuai dengan nilai setiap kriteria, setelah itu hasil dari jumlah di akar, dengan menggunakan persamaan (7) seperti yang tersaji pada perhitungan berikut ini:

Kehadiran
$$|x_{1}| = \sqrt{1^{2} + 3^{2} + 10^{2} + 1^{2}} = 10,5$$

$$|x_{1}| = \frac{x_{11}}{|x_{1}|} = \frac{1}{10,5} = 0,09$$

$$r_{11} = \frac{x_{11}}{|x_{1}|} = \frac{1}{10,5} = 0,28$$

$$r_{21} = \frac{x_{21}}{|x_{1}|} = \frac{10}{10,5} = 0,95$$

$$r_{31} = \frac{x_{11}}{|x_{1}|} = \frac{10}{10,5} = 0,95$$

$$r_{41} = \frac{x_{21}}{|x_{1}|} = \frac{1}{10,5} = 0,09$$
Keterlambatan
$$|x_{2}| = \sqrt{1^{2} + 1^{2} + 1^{2} + 1^{2}} = 2$$

$$r_{12} = \frac{x_{11}}{|x_{2}|} = \frac{1}{2} = 0,5$$

$$r_{22} = \frac{x_{21}}{|x_{2}|} = \frac{1}{2} = 0,5$$

$$r_{32} = \frac{x_{11}}{|x_{2}|} = \frac{1}{2} = 0,5$$

$$r_{42} = \frac{x_{21}}{|x_{2}|} = \frac{1}{2} = 0,5$$

$$r_{43} = \frac{x_{21}}{|x_{3}|} = \frac{7}{14,8} = 0,47$$

$$r_{43} = \frac{x_{21}}{|x_{3}|} = \frac{9}{14,8} = 0,61$$

Keterlambatan
$$|x_2| = \sqrt{1^2 + 1^2 + 1^2 + 1^2} = 2$$

$$r_{12} = \frac{x_{11}}{|x_2|} = \frac{1}{2} = 0,5$$

$$r_{22} = \frac{x_{21}}{|x_2|} = \frac{1}{2} = 0,5$$

$$r_{32} = \frac{x_{11}}{|x_2|} = \frac{1}{2} = 0,5$$

$$r_{42} = \frac{x_{21}}{|x_2|} = \frac{1}{2} = 0,5$$

Prestasi
$$|x_3| = \sqrt{5^2 + 8^2 + 7^2 + 9^2} = 14.8$$

$$r_{13} = \frac{x_{11}}{|x_3|} = \frac{5}{14.8} = 0.34$$

$$r_{23} = \frac{x_{21}}{|x_3|} = \frac{8}{14.8} = 0.54$$

$$r_{33} = \frac{x_{11}}{|x_3|} = \frac{7}{14.8} = 0.47$$

$$r_{43} = \frac{x_{21}}{|x_3|} = \frac{9}{14.8} = 0.61$$

Nilai sikap
$$|x_{5}| = \sqrt{6^{2} + 9^{2} + 10^{2} + 9^{2}} = 17,3$$
Nilai kognitif
$$|x_{4}| = \sqrt{8^{2} + 8^{2} +$$

Nilai sikap
$$|x_{5}| = \sqrt{6^{2} + 9^{2} + 10^{2} + 9^{2}} = 17,3$$
Nilai kognitif
$$|x_{4}| = \sqrt{8^{2} + 8^{2} + 8^{2} + 8^{2}} = 16$$

$$r_{15} = \frac{x_{11}}{|x_{5}|} = \frac{6}{17,3} = 0,35$$

$$r_{25} = \frac{x_{21}}{|x_{5}|} = \frac{9}{17,3} = 0,52$$

$$r_{35} = \frac{x_{11}}{|x_{5}|} = \frac{10}{17,3} = 0,58$$

$$r_{45} = \frac{x_{21}}{|x_{5}|} = \frac{9}{17,3} = 0,52$$
Nilai kognitif
$$|x_{4}| = \sqrt{8^{2} + 8^{2} + 8^{2} + 8^{2} + 8^{2}} = 16$$

$$r_{14} = \frac{x_{11}}{|x_{4}|} = \frac{8}{16} = 0,5$$

$$r_{24} = \frac{x_{21}}{|x_{4}|} = \frac{8}{16} = 0,5$$

$$r_{34} = \frac{x_{11}}{|x_{4}|} = \frac{8}{16} = 0,5$$

$$r_{44} = \frac{x_{21}}{|x_{4}|} = \frac{8}{16} = 0,5$$

Kemudian nilai dari setiap kriteria pada matriks keputusan dibagi dengan akar setiap kriteria sehingga menghasilkan matrik keputusan ternomalisasi seperti tersaji pada Tabel 9.

Tabel 9 Tabel matriks keputusan ternormalisasi (R)

Siswa	Kehadiran	Keterlambatan	Prestasi	Nilai Kognitif	Nilai Sikap,
Siswa 1	0.09	0.5	0.34	0.5	0.35
Siswa 2	0.28	0.5	0.54	0.5	0.52
Siswa 3	0.95	0.5	0.47	0.5	0.58
Siswa 4	0.09	0.5	0.61	0.5	0.52

2) Membuat matriks normalisasi terbobot. Untuk menghitung matriks normalisasi terbobot menggunakan persamaan 8

$$V = \begin{bmatrix} (0,1)(0,09) & (0,1)(0,50) & (0,2)(0,34) & (0,2)(0,10) & (0,4)(0,35) \\ (0,1)(0,28) & (0,1)(0,50) & (0,2)(0,54) & (0,2)(0,10) & (0,4)(0,52) \\ (0,1)(0,95) & (0,1)(0,50) & (0,2)(0,47) & (0,2)(0,10) & (0,4)(0,58) \\ (0,1)(0,09) & (0,1)(0,50) & (0,2)(0,61) & (0,2)(0,10) & (0,4)(0,52) \end{bmatrix}$$

$$= \begin{bmatrix} 0.01 & 0.05 & 0.07 & 0.10 & 0.13 \\ 0.03 & 0.05 & 0.11 & 0.10 & 0.19 \\ 0.10 & 0.05 & 0.10 & 0.10 & 0.21 \\ 0.01 & 0.05 & 0.13 & 0.10 & 0.19 \end{bmatrix}$$

3) Mencari Nilai solusi ideal positif dan solusi ideal negatif. Dengan berdasarkan rating bobot ternormalisasi maka dapat menentukan solusi ideal positif (A+) menggunakan rumus 9 dan solusi ideal negatif (A-) menggunakan rumus 2.5

$$A^{+} = \{ (\max v_{ij} \mid j \in J) (\min v_{ij} \mid j \in J'), i = 1, 2, 3, \dots m \} = \{ v_{1}^{+}, v_{2}^{+}, \dots v_{m}^{+} \}$$
(9)

$$A^{-} = \{ (\max v_{ij} \mid j \in J) (\min v_{ij} \mid j \in J'), i = 1,2,3,...m \} = \{ v_{1}^{-}, v_{2}^{-}, ... v_{m}^{-} \}$$
(10)

 $A^+ = \{0.10; 0.05; 0.13; 0.10; 0.21\}$

 $A^- = \{0,01; 0,05; 0,07; 0,10; 0,13\}$

Menentukan jarak alternatif Ai antara nilai setiap alternatif (Siswa) dengan solusi ideal positif dengan menggunakan rumus 11 dan solusi ideal negative dengan menggunakan Persamaan 11 dan persamaan 12

Solusi Ideal Positif

$$D_{i}^{+} = \sqrt{\frac{(0,01-0,10)^{2}+(0,05-0,05)^{2}+(0,07-0,13)^{2}}{+(0,10-0,10)^{2}+(0,05-0,05)^{2}(0,11-0,13)^{2}}} = 0,02$$

$$D_{2}^{+} = \sqrt{\frac{(0,03-0,10)^{2}+(0,05-0,05)^{2}(0,11-0,13)^{2}}{+(0,10-0,10)^{2}+(0,19-0,21)^{2}}} = 0,01$$

$$D_{3}^{+} = \sqrt{\frac{(0,10-0,10)^{2}+(0,05-0,05)^{2}(0,10-0,13)^{2}}{+(0,10-0,10)^{2}+(0,21-0,21)^{2}}} = 0,0$$

$$D_{4}^{+} = \sqrt{\frac{(0,01-0,10)^{2}+(0,05-0,05)^{2}(0,10-0,13)^{2}}{+(0,10-0,10)^{2}+(0,91-0,21)^{2}}} = 0,01$$

$$D_{4}^{+} = \sqrt{\frac{(0,01-0,10)^{2}+(0,05-0,05)^{2}+(0,13-0,13)^{2}}{+(0,10-0,10)^{2}+(0,91-0,21)^{2}}} = 0,01$$
Maka diperoleh nilai solusi idea positif sebagai berikut:
$$D_{1}^{+} = \text{Siswa 1} = 0,02$$

$$D_{2}^{+} = \text{Siswa 2} = 0,01$$

$$D_{3}^{+} = \text{Siswa 3} = 0,0$$

$$D_{4}^{+} = \text{Siswa 4} = 0,01$$

$$D_{1} = \begin{cases} (0.01 - 0.01)^{2} + (0.05 - 0.05)^{2} + (0.07 - 0.07)^{2} \\ + (0.10 - 0.10)^{2} + (0.13 - 0.13)^{2} \end{cases} = 0.00$$

$$D_{2} = \begin{cases} (0.03 - 0.01)^{2} + (0.05 - 0.05)^{2} (0.11 - 0.07)^{2} \\ + (0.10 - 0.10)^{2} + (0.19 - 0.13)^{2} \end{cases} = 0.01$$

$$D_{3} = \begin{cases} (0.10 - 0.01)^{2} + (0.05 - 0.05)^{2} + (0.10 - 0.07)^{2} \\ + (0.10 - 0.10)^{2} + (0.21 - 0.13)^{2} \end{cases} = 0.02$$

$$D_{4} = \begin{cases} (0.01 - 0.01)^{2} + (0.05 - 0.05)^{2} + (0.13 - 0.07)^{2} \\ + (0.10 - 0.10)^{2} + (0.05 - 0.05)^{2} + (0.13 - 0.07)^{2} \\ + (0.10 - 0.10)^{2} + (0.91 - 0.13)^{2} \end{cases} = 0.01$$
Maka diperoleh nilai solusi idea negatif sebagai berikut
$$D_{1} = Siswa \ 1 = 0.00$$

$$D_{2} = Siswa \ 2 = 0.01$$

$$D_{3} = Siswa \ 3 = 0.02$$

$$D_{4} = Siswa \ 4 = 0.01$$

 Menentukan nilai preferensi untuk setiap alternatif Nilai preferensi menggunakan persamaan14

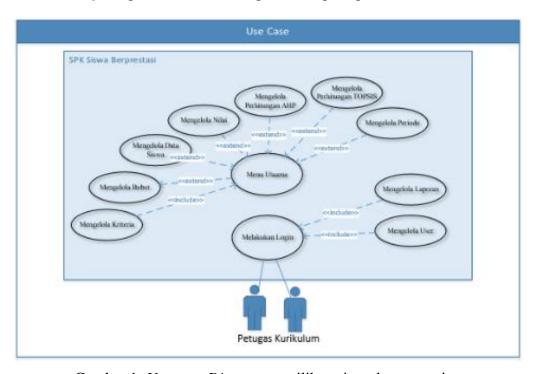
$$V_1 \text{ Siswa1} = \frac{0.0}{0.0 + 0.02} = 0.0$$

$$V_2 \text{ Siswa2} = \frac{0.01}{0.01 + 0.02} = 0.33$$

$$V_3$$
 Siswa $3 = \frac{0.02}{0.02 + 0} = 1$

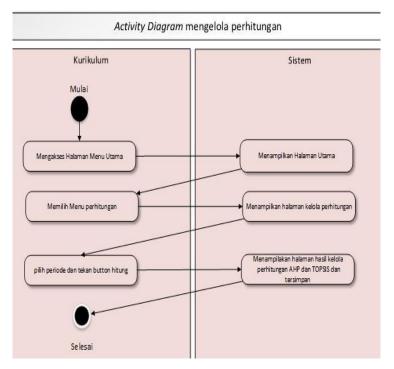
$$V_4$$
 Siswa $4 = \frac{0.01}{0.01 + 0.01} = 0.5$

5) Berdasarkan perhitungan diatas, maka langkah terakhir adalah melakukan pengurutan dengan nilai yang paling besar terlebih dahulu, maka didapat Siswa3 dengan nilai 1, Siswa4 dengan nilai 0.5, Siswa2 dengan nilai 0.33 dan terakhir adalah Siswa1 dengan nilai 0. Hasil pemilihan siswa berprestasi di SMA N 7 dengan menggunakan Metode AHP dan TOPSIS adalah siswa Siswa3. Selanjutnya akan menjadi pertimbangan Kepala Sekolah seperti pada tabel 10.

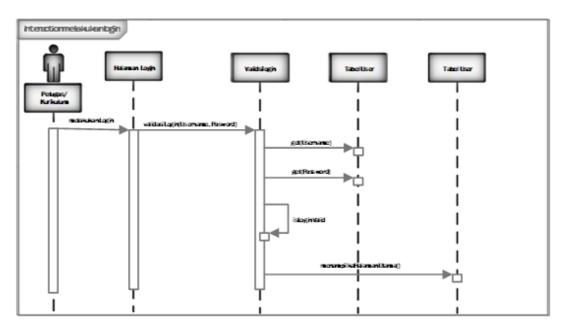

	Tabel	10	Hasil	Nilai	Topsis
--	-------	----	-------	-------	---------------

Siswa	Rangking	Nilai
Siswa 3	1	1
Siswa 4	2	0.5
Siswa 2	3	0.33
Siswa 1	4	0

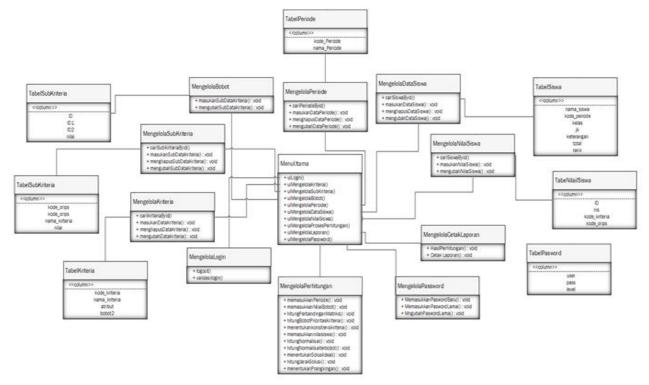
4.2 Perancangan Sistem


Perancangan sistem dengan menggunakan UML (Unified Modeling Language), adapun diagram yang dipergunakan meliputi Use Case Diagram, Activity Diagram, class diagram, squence diagram dan perancangan database.

Use case diagram menggambarkan proses sistem (kebutuhan sistem dari sudut pandang user). *Use case Diagram* pemilihan siswa berprestasi seperti pada Gambar 1.


Gambar 1. Use case Diagram pemilihan siswa berprestasi

Activity diagram ini berfungsi untuk melakukan proses perhitungan algoritma AHP dan TOPSIS. Cara kerjanya adalah Kurikulum melakukan login kemudian memilih menu perhitungan, kemudia pilih periode dan tekan button hitung. Activity diagram mengelola perhitungan dapat dilihat pada Gambar 2.


Gambar 2 Activity diagram mengelola perhitungan

Sequence diagram digunakan untuk memodelkan aliran logika dalam sebuah sistem dengan cara yang visual. *Sequence diagram* pemilihan siswa berprestasi seperti pada Gambar 3.

Gambar 3 Sequence diagram nilai alternatif

Class diagram adalah diagram yang dipergunakan untuk menampilkan beberapa kelas serta paket-paket yang ada dalam sistem yang sedang kita gunakan. Class diagram memberi gambaran (diagram statis) tentang sistem/perangkat lunak dan relas-relasi yang ada didalamnya. Class diagram dan relasi tabel sistem pemilihan siswa berprestasi adalah pada Gambar 4.

Gambar 4 Class Diagram

4.3 Implementasi Sistem

Tahapan implementasi sistem merupakan tahap terakhir dari pengembangan sistem SDLC (System Development Life Cycle) dengan Metode Waterfall. Aplikasi yang sudah berhasil dibuat terdiri dari: (1) Halaman login dibuat untuk memberi fasilitas terhadap pengguna sistem pendukung keputusan ini, sehingga pengguna dapat mengakses sistem sesuai dengan levelnya. (2) Halaman utama ini memberikan sambutan terhadap pengguna dan menjelaskan mengenai sistem pendukung keputusan dengan menggunakan metode AHP dan TOPSIS. (3) Halaman awal kriteria akan di sajikan tabel yang berisi kriteria dari setiap alternatif yang sudah diinputkan didalam sistem dengan tujuan untuk pengambilan keputusan. (4) Halaman bobot kriteria untuk menampilkan tabel perbandingan berpasangan dalam sistem perhitungan AHP untuk menentukan tingkat kepentingan antar masing masing kriteria. (5) Halaman data siswa pada Gambar 5 akan disajikan tabel yang berisikan semua data calon siswa yang sudah dimasukan kedalam sistem, dan data ini yang diolah admin selaku pemegang hak akses seperti menambahkan, mengubah, menghapus dan mencetak.

Gambar 5. Halaman Data Siswa

(6) Laporan cetak perhitungan ini menampilkan laporan dengan *versi print out* atau cetak hasil seleksi siswa berprestasi. Laporan hasil perhitungan seleksi siswa berprestasi seperti Gambar 6.

8/2	019			Ce	tak Laporan			
_			SEKOLAH MENE	NICATE	ATAC	NIECI	EDI 7 CHD	AT
5	imi		SEKULAH MENE	NGAH.	ALAS	NEGI	KI / SUK	AR
•								
		_ ו	Jl. Mr Muhammad	Yamin 79	9, Surc	akarta,	Jawa Teng	ah,
	BURNARY	-	Indonesia ·	Telp & F	ax (0:	271)7	18679	
					•	,		
ар	oran i	Perhitu	ngan					
40	Kode	NIS	Nama	Kelas	JК	Keterangan	Total	Rank
	A31	850305	VERA ANGGRAHENI NURCAHYANI	Kelas 10 MIPA-1	Perempuan		0.81107948918234	1
	A14	850289	JASMINE ADERIA RIZQITA MAHARANI	Kelas 10 MIPA-1	Perempuan		0.62786404944796	2
	A03	850278	ANNISSA RAHMAWATI	Kelas 10 MIPA-1	Perempuan		0.18919697354263	3
	A07	850282	CHEETARA NOVATRIYANTI SURYA ADI	Kelas 10 MIPA-1	Laki-laki		0.18261922342705	4
5	A04	850279	APATHEA FIDES PEPARING GUSTI	Kelas 10 MIPA-1	Laki-laki		0.081536348228165	5
5	A05	850280	AURELITHA NADEA SOFIE GANDHI	Kelas 10 MIPA-1	Perempuan		0.079156440452509	6
	A06	850281	CANDRAKANTI CAHYANING PUTRI	Kelas 10 MIPA-1	Perempuan		0.076776550663581	7
	A15	850290	JORDAN JEREMIA	Kelas 10 MIPA-1	Laki-laki		0.073568682708692	8
	A24	850299	RAFIDA LAILI PUJIANDARI	Kelas 10 MIPA-1	Perempuan		0.067097443558163	9
0	A30	850574	VANIA ATHALIA INDARTO PUTRI	Kelas 10 MIPA-1	Perempuan		0.059707620621152	10
1	A09	850284	DITA NOVIYANTI	Kelas 10 MIPA-1	Perempuan		0.051359102177743	11
2	A26	850301	REGETA ANISA RAMADHANI	Kelas 10 MIPA-1	Laki-laki		0.050516224043207	12
3	A08	850283	CHRIS OKTAVIA ANANDA SAPUTRI	Kelas 10 MIPA-1	Perempuan		0.04967188009725	13
4	A27	850302	SHAFA ZAHRA AL BATUL	Kelas 10 MIPA-1	Perempuan		0.048826068723324	14
5	A20	850295	NATANIA THEOFANY PRAMUDITA	Kelas 10 MIPA-1	Perempuan		0.044574943963582	15
6	A32	850306	WAWAN ADJI WIJAYA	Kelas 10 MIPA-1	Laki-laki		0.04286416565924	16
7	A12	850287	GALIH NOVIANTO	Kelas 10 MIPA-1	Laki-laki		0.04286416565924	17
8	A25	850300	RAJESH SINGH	Kelas 10 MIPA-1	Laki-laki		0.04028689192094	18
9	A19	850294	MUTIA MARHATIKA	Kelas 10 MIPA-1	Perempuan		0.035092203523886	19
20	A18	850293	MUHAMMAD FARIS AZHAR	Kelas 10 MIPA-1	Laki-laki		0.034221200073962	20
2.1	A11	850286	FRANSISCA VICTORY KUSUMANINGRUM	Kelas 10 MIPA-1	Perempuan		0.033348700371	21
22	A22	850297	NATHANAEL TIMOTY SUSETYA	Kelas 10 MIPA-1	Perempuan		0.027199174386066	22
23	A17	850292	LINTANG WIRAYUDA	Kelas 10 MIPA-1	Perempuan		0.027199174386066	23
4	A33	850307	ZAHRA AULIA NANDA	Kelas 10 MIPA-1	Perempuan		0.026314647719786	24
5	A23	850298	NUAR HATMA ANGGADITYA	Kelas 10 MIPA-1	Laki-laki		0.023651998673282	25
6	A21	850296	NATASHA ALFLASHYA KRISTY	Kelas 10 MIPA-1	Perempuan		0.023651998673282	26
7	A28	850303	SINDY AGUSTIN	Kelas 10 MIPA-1	Perempuan		0.021869326092385	27
8	A02	850277	AMAR ARIF SETIAWAN	Kelas 10 MIPA-1	Laki-laki		0.018285748937208	28
9	A01	850276	ADITYA CANDRA WIJAYA	Kelas 10 MIPA-1	Laki-laki		0.018285748937208	29
0	A10	850285	DIVA NOVIYANTI	Kelas 10 MIPA-1	Perempuan		0.017386047224728	30
1	A29	850304	TIARA OKTAVIANA	Kelas 10 MIPA-1	Perempuan		0.011045318259339	31
2	A13	850288	IKA PARAMITHA DEWI	Kelas 10 MIPA-1	Perempuan		0.0046292815266391	32
13	A16	850291	JUNIUS KRISTIAWAN	Kelas 10 MIPA-1	Laki-laki	I	0	33

Gambar 6. Halaman Laporan Hasil perhitungan Seleksi

4.4. Pengujian Fungsional

Pengujian sistem menggunakan pengujian Black box dimana tujuan dari pengujian ini yaitu untuk mengetahui fungsi-fungsi khusus dari aplikasi yang dikembangkan. Seperti pada tabel 11 kesimpulan hasil ujian:

Tabel 11. Kesimpulan Hasil Pengujian

No	Skenario pengujiuan	Item Pengujian	Hasil
1.	Verivikasi Login	Menu Login	Valid
2.	Simpan Data	Form user	Valid
		Form Data Debitur	Valid
		Form ubah password	Valid
3.	Cari Data	Form user	Valid
		Form Kriteria	Valid
		Form Data Debitur	Valid
4.	Edit Data	Form user	Valid
		Form Kriteria	Valid
		Form Data Debitur	Valid
5.	Hapus Data	Form user	Valid
		Form Kriteria	Valid
		Form Data Debitur	Valid
6.	Perhitungan	Form Perhitungan	Valid

Hasil pengujian tersebut, menunjukkan bahwa perangkat lunak yang digunakan secara fungsional memberikan hasil yang sesuai dengan apa yang diharapkan, semua fungsi pada aplikasi dapat berjalan dengan baik

IV. KESIMPULAN DAN SARAN

5.1 Kesimpulan

1) Telah berhasil membuat aplikasi Sistem Pendukung Keputusan dengan menggunakan Metode AHP (Analytical Hyrarchy Proses) dan TOPSIS (*Technique For Order Of Preference By Similarity To Ideal Solution*) untuk seleksi pemilihan siswa berprestasi.

- 2) Pengujian dalam sistem pendukung keputusan ini menggunakan metode *Blackbox*, dimana Aplikasi yang dibangun secara fungsional dapat berjalan dengan baik.
- 3) Hasil uji validitas menunjukan bahwa kinerja sistem sudah baik, dukungan menjadikan sistem baru sebesar 84,85 %, dengan menggunakan 5 kriteria yaitu nilai sikap, nilai kognitif, prestasi, keterlambatan dan kehadiran, dengan menggunakan 5 kriteria membuat penilaian siswa berprestasi lebih obyektif, maka dengan berdasarkan uji validitas tersebut dapat dinyatakan bahwa sistem yang dibuat layak digunakan untuk menentukan siswa berprestasi di SMA N 7 Surakarta.

5.2 Saran

- 1) Metode AHP (*Analytical Hyrarchy Proses*) dan TOPSIS (*Technique For Order Of Preference By Similarity To Ideal Solution*) ini dapat di terapkan secara pararel dengan sistem lama, agar sistem nantinya memiliki kesesuaian dengan proses penentuan pemilihan siswa berprestasi di SMA N 7 Surakarta.
- 2) Penelitian ini menggunakan 5 kriteria, yaitu Nilai Sikap, Nilai Kognitif, Prestasi, Keterlambatan dan Kehadiran, sehingga untuk menunjang pengembangan sistem yang lebih baik lagi untuk ditambahkan beberapa kriteria penentu lainnya yang dapat memperkuat dalam pengambilan keputusan penentuan siswa berprestasi.
- 3) Perlu adanya interegasi database nilai siswa sekolah dengan database aplikasi untuk mempermudah proses input data nilai siswa.

DAFTAR PUSTAKA

- Chamid, A. A., & Murti, A. C. (2018). Prioritization of Natural Dye Selection In Batik Tulis Using AHP and TOPSIS Approach. *IJCCS (Indonesian Journal of Computing and Cybernetics Systems)*, *12*(2), 129. https://doi.org/10.22146/ijccs.29813
- Heru Lumaksono, H. (2017). Sistem Pendukung Keputusan untuk Menentukan Alat Tangkap yang Sesuai bagi Nelayan di Madura. *Seminar MASTER 2017 PPNS*, *1509*, 1–6.
- Juliyanti, Mohammad Isa Irawan, dan I. M. (2011). Pemilihan Guru Berprestasi Menggunakan Metode Ahp Dan Topsis. *Prosiding Seminar Nasional Penelitian Pandidikan Dan Penerapan MIPA Fakultas MIPA Universitas Negeri Yogyakarta*, 63–68.
- Kusrini, & Gole, A. W. (2007). Sistem Pendukung Keputusan Penentuan Prestasi Pegawai. *Seminar Nasional Aplikasi Teknologi Informasi*, 2007(Snati).
- Kusumadewi, S. (2005). Pencarian bobot atribut pada Multiple Attribute Decision Making (MADM) dengan Pendekatan Obyektif Menggunakan Algoritma Genetika. *GEMATIKA JURNAL MANAJEMEN INFORMATIKA*, 7(1), 97–105.
- Purwitasari, K. D., & Pribadi, F. S. (2015). Implementasi Sistem Pendukung Keputusan Peminatan Peserta Didik SMA menggunakan Metode AHP (Analytic Hierarchy Process) dan SAW (Simple Additive Weighting). *Jurnal Teknik Elektro*, 7(2).
- Saaty, T. L. (2008). Decision making with the Analytic Hierarchy Process. *Scientia Iranica*, 9(3), 215–229. https://doi.org/10.1504/ijssci.2008.017590
- Sejati Purnomo, E. N., Widya Sihwi, S., & Anggrainingsih, R. (2013). Analisis Perbandingan Menggunakan Metode AHP, TOPSIS, dan AHP-TOPSIS dalam Studi Kasus Sistem Pendukung Keputusan Penerimaan Siswa Program Akselerasi. *Jurnal Teknologi & Informasi ITSmart*, 2(1), 16. https://doi.org/10.20961/its.v2i1.612