High Througput Multicore Server Dengan Kernel Bypass

dimas febriyan priambodo

Abstract


Kernel performs one part of the overall operating system utility as a bridge between the user and the hardware. In multi core hardware, the kernel was also created with a general approach so it needs to be adjusted for specific purposes. Kernels for servers using common Kernels have many limitations, such as single socket descriptor, single IRQ, and lack of pooling so that they require some modification to run optimally. Kernel bypass is a method by eliminating the automation of a server used to realize a server, namely high throughput. Kernel bypass is a combination of techniques, modification at the driver level with hashing rx signal and modification of multiple receivers with multiple ip receivers, multiple thread receivers, and multiple port listeners. This combined modification makes the server more reliable with an average throughput increase of 250.44%.


Keywords


kernel bypass, hashing rx, multiple ip receiver, multiple thread receiver, multiple port listener

Full Text:

PDF

References


Angelo, G. D., Marchetti-spaccamela, A., & Cnr, I. (2016). Multiprocessor Real-Time Scheduling with Hierarchical Processor Affinities. 2016 28th Euromicro Conference on Real-Time Systems, 237–247. https://doi.org/10.1109/ECRTS.2016.24

Bo, Z. (2016). Analysis of the Resource Affinity in NUMA Architecture for High Performance Network. 2016 5th International Conference on Measurement, Instrumentation and Automation, 547–550.

Diener, M., Cruz, E. H. M., Alves, M. A. Z., Navaux, P. O. A., Busse, A., & Heiss, H. U. (2016). Kernel-Based Thread and Data Mapping for Improved Memory Affinity. IEEE Transactions on Parallel and Distributed Systems, 27(9), 2653–2666. https://doi.org/10.1109/TPDS.2015.2504985

Fusco, F., & Deri, L. (2010). High Speed Network Traffic Analysis with Commodity Multi-core Systems. proceedings of the 10th ACM SIGCOMM conference on Internet measurement, 218–224.

Galagan, V., Yurchenko, O., Preobrazhensky, E., Zhuravkov, P., & Dombrougov, M. (2013). Multi-gigabit intel-based software routers. Proceedings - RoEduNet IEEE International Conference. https://doi.org/10.1109/RoEduNet.2013.6714193

Gu, Q., Wen, L., Dai, F., Gong, H., Yang, Y., Xu, X., & Feng, Z. (2014). StackPool: A high-performance scalable network architecture on multi-core servers. Proceedings - 2013 IEEE International Conference on High Performance Computing and Communications, HPCC 2013 and 2013 IEEE International Conference on Embedded and Ubiquitous Computing, EUC 2013, 17–28. https://doi.org/10.1109/HPCC.and.EUC.2013.13

Hanford, N., Ahuja, V., Farrens, M., Ghosal, D., Balman, M., Pouyoul, E., & Tierney, B. (2015). Improving network performance on multicore systems : Impact of core affinities on high throughput flows. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2015.09.012

Huang, C., Yu, X., & Luo, H. (2010). Research on high-speed network data stream capture based on multi-queue NIC and multi-core processor. ICIME 2010 - 2010 2nd IEEE International Conference on Information Management and Engineering, 2, 248–251. https://doi.org/10.1109/ICIME.2010.5477440

Jie, L., Shuhui, C., & Jinshu, S. (2016). Implementation of TCP large receive offload on multi-core NPU platform. 2016 International Conference on Information and Communication Technology Convergence, ICTC 2016, 258–263. https://doi.org/10.1109/ICTC.2016.7763481

Rivera, D., Ach, E., & Bustos-jim, J. (2014). Analysis of Linux UDP Sockets Concurrent Performance. 2014 33rd International Conference of the Chilean Computer Science Society, 65–69.

Shambharkar, S. A. (2015). A Study on Setting Processor or CPU Affinity in Multi-Core Architecture for Parallel Computing. International Journal of Science and Research, 4(5), 2013–2016.

Tsai, W. Y., Huang, N. F., & Hung, H. W. (2012). A port-configuration assisted NIC IRQ affinitization scheme for multi-core packet forwarding applications. GLOBECOM - IEEE Global Telecommunications Conference, 2547–2552. https://doi.org/10.1109/GLOCOM.2012.6503500




DOI: http://dx.doi.org/10.30646/sinus.v18i2.472

Refbacks

  • There are currently no refbacks.


 


STMIK Sinar Nusantara

KH Samanhudi 84 - 86 Street, Laweyan Surakarta, Central Java, Indonesia
Postal Code: 57142, Phone & Fax: +62 271 716 500 

Email: ejurnal @ sinus.ac.id | https://p3m.sinus.ac.id/jurnal/e-jurnal_SINUS/

ISSN: 1693-1173 (print) | 2548-4028 (online)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats