Pengembangan Aplikasi Berbasis Website untuk Deteksi Hama pada Daun Sawi Menggunakan Metode Deep Learning NASNetMobile dan Model Sequential
Abstract
Green mustard (Brassica rapa var. parachinensis) is one of the important horticultural commodities in Indonesia with high economic value, but its production has declined due to leaf pest attacks such as armyworms, Plutella larvae, and aphids. Manual pest detection, which is time-consuming and prone to errors, poses a major challenge in effective early control. This research aims to develop a pest detection system on mustard greens leaves based on a website using the NASNetMobile deep learning model and sequential architecture, to provide a practical, accurate, and easily accessible solution for farmers. The research method includes the collection of 1000 images of mustard greens from the Kaggle dataset, preprocessing with augmentation and normalization, development of a CNN model with two architectures (NASNetMobile and sequential), evaluation of model performance, and implementation of a Flask-based prototype for web-based testing. The training results show that the best architecture (NASNetMobile + sequential) achieved a validation accuracy of 94% and a validation loss of 0.1160 in 14 seconds of training. Further testing using 50 new images showed an overall detection accuracy of 96%, with 100% accuracy on pest-infected leaves and 92% on pest-free leaves. The conclusion of this research indicates that the web-based detection system using the NASNetMobile and sequential models is effective in supporting pest management on green mustard plants. This system provides easy access, quick response, and high accuracy, although further development with a more diverse dataset and field testing are needed to improve reliability in real conditions across various agricultural environments.
Keywords
Full Text:
PDFReferences
Annesa, O. D., Kartiko, C., & Prasetiadi, A. (2020). Identifikasi Spesies Reptil Menggunakan Convolutional Neural Network (CNN). Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), 1(1), 19–25.
Debats, S., Luo, D., Estes, L., Fuchs, T. J., & Caylor, K. K. (2016). A Generalized Computer Vision Approach to Mapping Crop Fields in Heterogeneous Agricultural Landscapes. Remote Sensing of Environment, 179, 210–221. https://doi.org/10.1016/j.rse.2016.03.010
Fattah, A., & Ilyas, A. (2016). Siklus Hidup Ulat Grayak (Spodoptera litura, F ) dan Tingkat Serangan pada Beberapa Varietas Unggul Kedelai di Sulawesi Selatan. Prosiding Seminar Nasional Inovasi Teknologi Pertanian, 0411, 834–842. http://kalsel.litbang.pertanian.go.id/ind/images/pdf/Semnas2016/103_abdul_fattah.pdf
Kamble, D. R., Gdale, S. K., Pawar, D. N., Shedage, G. D., & Mahajan, M. (2024). Leaf Disease Detection System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 12(Maret), 160–164. https://doi.org/https://doi.org/10.22214/ijraset.2024.58699
Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a review. Plant Methods, 17(1), 22. https://doi.org/10.1186/s13007-021-00722-9
Santoso, A., & Widyawati, N. (2020). Pengaruh Umur Bibit terhadap Pertumbuhan dan Hasil Pakcoy (Brassica rapa ssp. chinensis) pada Hidroponik NFT. Vegetalika, 9(3), 464. https://doi.org/10.22146/veg.52570
Song, J. S., Kim, D. S., Kim, H. S., Jung, E. J., Hwang, H. J., & Park, J. (2023). Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction. Journal of Bio-Environment Control, 32(4), 434–441. https://doi.org/10.12791/ksbec.2023.32.4.434
Suárez, A., Molina, R. S., Ramponi, G., Petrino, R., Bollati, L., & Sequeiros, D. (2021). Pest detection and classification to reduce pesticide use in fruit crops based on deep neural networks and image processing. 2021 XIX Workshop on Information Processing and Control (RPIC), 1–6. https://doi.org/10.1109/RPIC53795.2021.9648485
Thomas, J. C. S., Manikandarajan, S., & Subha, T. K. (2023). AI based pest detection and alert system for farmers using IoT. E3S Web Conf., 387. https://doi.org/10.1051/e3sconf/202338705003
Wang, J., Chen, C., Huang, S., Wang, H., Zhao, Y., Wang, J., Yao, Z., Sun, C., & Liu, T. (2025). Monitoring of Agricultural Progress in Rice-Wheat Rotation Area Based on UAV RGB Images. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1502863
Wang, Y.-H., & Su, W.-H. (2022). Convolutional Neural Networks in Computer Vision for Grain Crop Phenotyping: A Review. In Agronomy (Vol. 12, Issue 11). https://doi.org/10.3390/agronomy12112659
Yama, D. I., & Kartiko, H. (2020). Pertumbuhan dan Kandungan Klorofil Pakcoy (Brassica rapa L) Pada Beberapa Konsentrasi AB Mix Dengan Sistem Wick. Jurnal Teknologi, 12(1), 21–30.
Yang, G., He, Y., Yang, Y., & Xu, B. (2020). Fine-Grained Image Classification for Crop Disease Based on Attention Mechanism. Frontiers in Plant Science, 11(December), 1–15. https://doi.org/10.3389/fpls.2020.600854
Zhang, H., Feng, S., Wu, D., Zhao, K., Liu, X., Zhou, Y., Wang, S., Deng, H., & Zheng, S. (2024). Hyperspectral Image Classification on Large-Scale Agricultural Crops: The Heilongjiang Benchmark Dataset, Validation Procedure, and Baseline Results. Remote Sensing, 16(3), 478. https://doi.org/10.3390/rs16030478
DOI: http://dx.doi.org/10.30646/sinus.v23i2.992
Refbacks
- There are currently no refbacks.
STMIK Sinar Nusantara
KH Samanhudi 84 - 86 Street, Laweyan Surakarta, Central Java, Indonesia
Postal Code: 57142, Phone & Fax: +62 271 716 500
Email: ejurnal @ sinus.ac.id | https://p3m.sinus.ac.id/jurnal/e-jurnal_SINUS/
ISSN: 1693-1173 (print) | 2548-4028 (online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.