Eksplorasi Algoritme Klasifikasi untuk Analisis Sentimen pada Ulasan Google Review Terhadap Ekowisata Sungai Mudal
Abstract
Mudal River is an ecotourism developed by PT. PLN (Persero) located in Kulon Progo Regency, Special Region of Yogyakarta. As a tourism developer, visitors' impressions can be used as evaluation material to improve tourism facilities and services. This study aims to determine the distribution of positive and negative sentiments from visitor reviews that can be used as support in business decision making. A total of 3,663 data were obtained from Google Review, then pre-processing was carried out to obtain higher quality data. Labeling/annotation uses Large Language Models (chatGPT), while the classification process uses the Stochastic Gradient Descent Method. Model testing uses the K-Fold method to obtain average accuracy, recall, and AUC values. The classification performance results produce an accuracy of 85.5%, with a dominance of positive labels in the annotation results. Meanwhile, the wordcloud results show that words such as water quality, waterfalls, mudal river, and photo spots have positive affirmations. However, several areas are of concern in negative sentiment, especially related to roads and photo spot management, as well as the issue of entrance tickets and the potential for paid photos.
Keywords
Full Text:
PDFReferences
Antonio, V. D., Efendi, S., & Mawengkang, H. (2022). Sentiment analysis for covid-19 in Indonesia on Twitter with TF-IDF featured extraction and stochastic gradient descent. Int. J. Nonlinear Anal. Appl., 13(1), 1367–1373.
BPS Yogyakarta. (2024). Perkembangan Pariwisata Daerah Istimewa Yogyakarta, Agustus 2024.
Brandt, J., & Lanzén, E. (2021). A Comparative Review of SMOTE and ADASYN in Imbalanced Data Classification.
Chamidah, N., Widiyanto, D., Seta, H. B., & Aziz, A. A. (2024). The Impact of Oversampling and Undersampling on Aspect-Based Sentiment Analysis of Indramayu Tourism Using Logistic Regression. Revue d’Intelligence Artificielle, 38(3), 795–804. https://doi.org/10.18280/ria.380306
Elreedy, D., Atiya, A. F., & Kamalov, F. (2024). A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Machine Learning, 113(7), 4903–4923. https://doi.org/10.1007/s10994-022-06296-4
Guerrero, M. C., Parada, J. S., & Espitia, H. E. (2021). EEG signal analysis using classification techniques: Logistic regression, artificial neural networks, support vector machines, and convolutional neural networks. Heliyon, 7(6). https://doi.org/10.1016/j.heliyon.2021.e07258
Irsyad, M. (2020). Kondisi Potensi Wisata di Ekowisata Sungai Mudal Kabupaten Kulon Progo. Jurnal Kepariwisataan: Destinasi, Hospitalitas dan Perjalanan, 4(1), 29–39. https://doi.org/10.34013/jk.v4i2.36
Khairunnisa, S., Adiwijaya, A., & Faraby, S. Al. (2021). Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19). JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(2), 406. https://doi.org/10.30865/mib.v5i2.2835
Khofifah, W., Rahayu, D. N., & Yusuf, A. M. (2022a). Analisis Sentimen Menggunakan Naive Bayes Untuk Melihat Review Masyarakat Terhadap Tempat Wisata Pantai Di Kabupaten Karawang Pada Ulasan Google Maps. Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, 16(4), 28–38. https://doi.org/10.35969/interkom.v16i4.192
Khofifah, W., Rahayu, D. N., & Yusuf, A. M. (2022b). Analisis Sentimen Menggunakan Naive Bayes Untuk Melihat Review Masyarakat Terhadap Tempat Wisata Pantai Di Kabupaten Karawang Pada Ulasan Google Maps. Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, 16(4), 28–38. https://doi.org/10.35969/interkom.v16i4.192
Konstantinovsky, T. (2021). A New Approach To Text Rating Classification Using Sentiment Analysis. http://arxiv.org/abs/2103.12368
Marquis, P., Papini, O., & Prade, H. (2020). A Guided Tour of Artificial Intelligence Research 2 A I Algorithms.
Onan, A. (2021). Sentiment analysis on massive open online course evaluations: A text mining and deep learning approach. Computer Applications in Engineering Education, 29(3), 572–589. https://doi.org/10.1002/cae.22253
Permata Aulia, T. M., Arifin, N., & Mayasari, R. (2021). Perbandingan Kernel Support Vector Machine (SVM) dalam Penerapan Analisis Sentimen Vaksinasi Covid-19. SINTECH (Science and Information Technology) Journal, 4(2), 139–145. https://doi.org/10.31598/sintechjournal.v4i2.762
Qian, F., Han, J., He, Y., Zheng, T., & Zheng, G. (2023). Sentiment Knowledge Enhanced Self-supervised Learning for Multimodal Sentiment Analysis.
Saurina, N., Rahayuningsih, T., Retnawati, L., Teknik, F., Wijaya, U., & Surabaya, K. (2022). Analisis Sentimen Ulasan Pelanggan Batik Ecoprint Menggunakan Naïve Bayes Dan KNN Classifier. 9(2). http://jurnal.mdp.ac.id
Schober, P., & Vetter, T. R. (2021). Statistical Minute Logistic Regression in Medical Research (Vol. 132, Nomor 2). www.anesthesia-analgesia.org365
Septiandari, W., Hidayatullah, S., Alvianna, S., Rachmadian, A., & Sutanto, D. H. (2021). Pengaruh Citra Destinasi Wisata Dan Kualitas Layanan Terhadap Kepuasan Pengunjung Di Pantai Tiga Warna. Competence : Journal of Management Studies, 15(2), 134–148. https://doi.org/10.21107/kompetensi.v15i2.12512
Singh, N. K., Tomar, D. S., & Sangaiah, A. K. (2020). Sentiment analysis: a review and comparative analysis over social media. Journal of Ambient Intelligence and Humanized Computing, 11(1), 97–117. https://doi.org/10.1007/s12652-018-0862-8
Sun, X., & He, J. (2020). A novel approach to generate a large scale of supervised data for short text sentiment analysis. Multimedia Tools and Applications, 79(9–10), 5439–5459. https://doi.org/10.1007/s11042-018-5748-4
Wicaksono, A. (2020). NEW NORMAL PARIWISATA YOGYAKARTA.
Yuan, S. (2023). Design and Visualization of Python Web Scraping Based on Third-Party Libraries and Selenium Tools. Academic Journal of Computing & Information Science, 6(9). https://doi.org/10.25236/ajcis.2023.060904
Yuyun, Nurul Hidayah, & Supriadi Sahibu. (2021). Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(4), 820–826. https://doi.org/10.29207/resti.v5i4.3146
Zabor, E. C., Reddy, C. A., Tendulkar, R. D., & Patil, S. (2022). Logistic Regression in Clinical Studies. International Journal of Radiation Oncology Biology Physics, 112(2), 271–277. https://doi.org/10.1016/j.ijrobp.2021.08.007
Zakariyah, M., & Zaky, U. (2022). Analysis of Machine Learning Algorithm for Sleep Apnea Detection Based on Heart Rate Variability (Vol. 10, Nomor 2).
DOI: http://dx.doi.org/10.30646/sinus.v23i2.938
Refbacks
- There are currently no refbacks.
STMIK Sinar Nusantara
KH Samanhudi 84 - 86 Street, Laweyan Surakarta, Central Java, Indonesia
Postal Code: 57142, Phone & Fax: +62 271 716 500
Email: ejurnal @ sinus.ac.id | https://p3m.sinus.ac.id/jurnal/e-jurnal_SINUS/
ISSN: 1693-1173 (print) | 2548-4028 (online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.